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Abstract: Seasonal and pandemic influenza A virus (IAV) infections are a cause of severe
morbidity and mortality worldwide. In this work, we study the problem of influenza treatment
from a control theory perspective. Combined techniques of impulsive control and inverse optimal
control are applied to an IAV model. Numerical results show that control-based strategies could
improve virological efficacy and at the same time may reduce the drug amount in comparison
to current clinical recommendations of pandemic regimens. This work discusses the advantages
of theoretical approaches to tackle influenza infections.
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1. INTRODUCTION

Seasonal influenza is an acute viral infection that can
spread fast from person to person, causing annual epi-
demics and outbreaks. Annual epidemics are estimated to
result in about 3 to 5 million cases of severe illness and
about 250000 to 500000 deaths [WHO (2014)]. Antiviral
drugs and influenza vaccines play a key role in preven-
tion and treatment of acute IAV infections. The most
commonly used Food and Drug Administration (FDA)
approved antiviral drugs are neuraminidase inhibitors,
among the most important are Zanamivir, Peramivir, and
Oseltamivir. These can reduce the severity and dura-
tion of influenza symptoms and associated complications
[Gubareva et al. (2000)].

Therapy efficacy can be evaluated under two principal
indicators, the virological efficacy index and the total
amount of drug [Canini et al. (2014)]. The first indicates
the efficacy of the drug clearing the virus, the second
reports the quantity of drug administrated. Nowadays
pharmaceutical companies consider a strategic initiative
to implement modeling approaches within drug projects.
To this end, the Pharmacokinetics (PK) and Pharmaco-
dynamics (PD) modelling and simulation provide a frame-
work for linking interactions between drugs, pharmacolog-
ical targets, physiological pathways and integrated disease
systems [Agoram et al. (2007),Van der Graaf and Benson
(2011)].

Influenza treatment recommendation is formed by fixed
doses of drug at fixed time intervals [WHO (2009)]. Several
diseases have been analysed from an engineering approach
like HIV [Hernandez-Vargas et al. (2011), Chang et al.
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(2012) Rivadeneira et al. (2014), Hernandez-Vargas et al.
(2014), Rocha et al. (2016)], Diabetes [Leon et al. (2013),
Chandgude and Pawar (2016)] or epidemiological level
[Bakare et al. (2014)], improving treatments and recov-
ering from illness. Among different infectious diseases,
several theoretical works have been developed to control
HIV infection and to mitigate viral mutation [Rivadeneira
and Moog (2012), Hernandez-Vargas et al. (2013)].

In [Lee et al. (2013), Jaberi-Douraki and Moghadas (2014),
Imran et al. (2016)] authors addressed influenza treat-
ments to an epidemiological level to reduce transmission
between hosts, however, control-based strategies remain
largely unexplored at the host level. Here, we consider
that antiviral therapies can be tailored to measurements
of CD8+ T cells and the influenza A virus (IAV), aiming
to have the highest virological efficacy.

The paper is organized as follows: Section 2 describes the
IAV and PK/PD dynamics model including parameters.
In Section 3, theoretical concepts of the inverse optimal
impulsive control are introduced. Subsection 3.1 shows the
integration of the IAV model and impulsive control to esti-
mate the drug dose. Subsection 3.2 indicates performance
indices to evaluate drug treatments. To test the perfor-
mance of the proposed methodology, Section 4 presents a
comparison of the control-based strategy and the common
treatment recommendations by the FDA [FDA (2008)].
Section 5 presents conclusions and future research.

2. MODELLING FRAMEWORK

In the last years, novel modelling and simulation contri-
butions have been developed in IAV infection dynamics
[Boianelli et al. (2015)]. Here, we consider the model pro-
posed by Boianelli et al., which consists on the virus (V )
and CD8+ T cells (E) dynamics at a host level. Parameter
values, estimation procedures and identifiability studies

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

12696



are reported in [Boianelli et al. (2015)]. The IAV model
is formed with the following equations:

Ė = SE + rE

(
V

V + ke

)
− ceE (1)

V̇ = pV

(
1− V

kv

)
− cvV E. (2)

The CD8+ T cells homeostatic replenishment rate is SE =
ceE(0), where ce is the half life of CD8+ T cells and E(0)
is the initial number of these cells. E cells proliferation
promoted by the virus follows a logistic growth with half
saturation constant ke. In this model, the virus replicates
with a logistic function, with a maximum carrying capacity
kv and the replication rate p. The virus is cleared with rate
cvE. A graphical description of the model is presented in
Fig. 1 and model parameters are shown in Table 1.

Fig. 1. The IAV virus (V ) promotes CD8+ T cells (E)
proliferation with a rate r. Viral clearance rate is
determined by cv.

Table 1. IAV model parameters.

Parameter Nominal value Units

r 0.33 days−1

ke 2.7 × 103 PFU/mL
ce 2.0 × 10−2 days−1

SE 2.0 × 104 days−1cells
p 4.4 days−1

kv 106 PFU/mL
cv 1.24 × 10−6 days−1cells−1

E(0) 106 cells
V(0) 25 PFU/mL

2.1 PK/PD Modelling

Antiviral PK/PD dynamics are needed to study the effect
of drugs on influenza infections. The PK phase describes
the temporal distribution of drug concentration in different
organs. This can be modeled by a constant decay differ-
ential equation Ḋ = −δDD where D is the amount of
drug available and δD is the drug elimination rate. On
the other hand, the PD phase describes the effect of a
drug on the organism. PD dynamics can be represented
by η = D

D+EC50
indicating the efficacy of the treatment,

where the parameter EC50 is the drug concentration level
at which provides the 50% of drug efficacy.

Drug intake time is defined by τk, where {k = 1, 2, · · · }
indicates the sequence of drug intakes. In order to link the
antiviral therapy with the IAV model, we consider that
the viral replication rate p can be replaced by p(1 − η),
based on the fact that antiviral therapies mainly affect the
replication cycle of the virus. Consequently, the equation
(2) can be rewritten as

V̇ = p

(
1− D

D + EC50

)
V

(
1− V

kv

)
− cvV E (3)

with

Ḋ(t) = −δDD(t), τk ≤ t < τk+1 (4)

with τk ≤ t < τk+1 the time intervals between drug
intakes. This indicates that the first drug intake of the
treatment is given by D (τ1) = D (t0). In this way, PK/PD
and IAV model are integrated. PK/PD parameters are
listed in Table 2.

Table 2. Oseltamivir PK/PD parameters [Wat-
tanagoon et al. (2009), WHO (2009), FDA

(2008)]

Parameter Nominal value Units

EC50 42.30 mg
δD 3.26 days−1

τk+1 − τk 0.5 days

3. INVERSE OPTIMAL IMPULSIVE CONTROL

Given a plant P whose state variables are denoted by
X ∈ <n, a set of control instants T = {τk}, τk ∈ <,
τk < τk+1, k = 1, 2, · · · , and control laws U(k,X) ∈ <n,
k = 1, 2, · · · . At each τk, X is changed impulsively by
X(τ+k ) = X(τ−k ) + U(k,X) such that the output
Y = f(X), f : <n → <m approaches the goal Y ∗ ∈ <m as
k →∞ [Yang (1999)].
Impulsive control system dynamics are governed by its
Ordinary Differential Equations (ODEs) when t 6= τk,
so whenever t 6= τk, the controlled system is at open
loop (free system). Only at the instant τk, k = 1, 2, · · · ,
and considering an impulsive control state space system
∆X |t=τk = By, the state variable is instantaneously

changed from X(τ−k ) to X(τ+k ) = X(τ−k ) + U(k,X) =

X(τ−k ) +By.

Given y = Cx, y ∈ <m is the output, the impulsive control
system can be written as

ẋ=Ax+ φ(x), t 6= τk

∆X |t=τk =BCx, k = 1, 2, · · ·
x(t+0 ) = x0 (5)

where φ : <n → <n is a nonlinear function, x ∈ <n,
A is a n × n constant matrix, B is a n × m constant
matrix and C is a m × n constant matrix, one can see
that U(k,X) = BCx, further details can be found in Yang
(1999).

Haddad [Haddad et al. (2006)] proposed a strategy for
the inverse optimal hybrid control problem parameterizing
a family of stabilizing hybrid controllers. This minimizes
a derived cost functional that provides flexibility in the
specific control law. Consider the non-linear impulsive
controlled system

ẋ(t) = fc(x(t)) +Gc(x(t))uc(t), t 6= τk (6)

∆x(t) = fd(x(t)) +Gd(x(t))ud(t), t = τk (7)

with x(0) = x0, k = 1, 2, · · · , and performance functional
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J(x0, uc(·), ud(·)) =

∫ ∞
0

{J1(x(t)) + J2(x(t), t)} dt (8)

+
∑

k∈Z[0,∞)

{J3(x(tk)) + J4(x(tk), tk)}

where

J1(x(t)) =L1c(x(t))

J2(x(t), t) = uTc (t)R2c(x(t))uc(t)

J3(x(tk)) =L1d(x(tk))

J4(x(tk), tk) = uTd (tk)R2d(x(tk))ud(tk)

with (uc(·), ud(·)) is an admissible hybrid control.
Assume there exist a continuously differentiable function
W : <n → <, and functions P12 : Zτk → <1×md ,
P2 : Zτk → Nmd such that W (0) = 0, W (x) > 0,
x ∈ <n, x 6= 0. L1c : <n → < and satisfies L1c(x) > 0,
R2c : <n → Pmc . L1d : Zτk → < and satisfies L1d(x) > 0,
R2d : Zτk → Pmd . Also, fc : M → Rn, fd : S → Rn.
M is an open set with 0 ∈ M , and S ⊂ [0,∞) × M
is the resetting set, x(t) ∈ M ⊆ <n. Pmc and Pmd are
positive definite matrices with size mc×mc and md×md,
respectively, Nmd is amd×md nonnegative definite matrix.

The zero solution for the closed-loop system in (6) and (7)
is globally asymptotically stable with the hybrid feedback
control law

uc(t) = φc(x) = −1

2
R−12c (x)GTc (x)W ′T (x), t 6= τk (9)

ud(t) = φd(x) = −1

2
(R2d(x) + P2(x))−1PT12(x), t = τk

(10)

and the performance functional (8), with

L1c(x ) = φTc (x)R2c(x )φc(x )−W ′(x )fc(x ), (11)

L1d(x ) = φTd (x )(R2d(x ) + P2(x ))φd(x )

−W (x + fd(x )) +W (x ), (12)

which is minimized in the sense that

J(x0, φc(x(·)), φd(x(·))) = min
ξ
J(x0, uc(·), ud(·)),

x0 ∈ <n, ξ = (uc(·), ud(·)) ∈ Ω(x0) (13)

J(x0, φc(x (·)), φd(x (·))) = W (x0), x0 ∈ <n. (14)

Here, Ω(x0)=(uc(·), ud(·)) is admissible and x(·) given by
(6) and (7) satisfies that x(0) → 0 as t → ∞. The formal
proof and further explanations can be found in [Haddad
et al. (2006)].

3.1 Control-Based Drug Estimation

The closed-loop IAV-PK/PD model in (1), (3) and (4)
can be represented as the impulsive controlled system in
(6) and (7), with the drug state variable D impulsively
changed as in (5) and control law (10). The closed-loop
system representation is as follow

fc(x(t)) =


p

(
1− D

D + EC50

)
V

(
1− V

kv

)
− cvV E

−δDD
(15)

x, [V,D]T

∆x= ∆D(τk) = fd(x(t)) + φd(x(t)) (16)

fd(x(t)) =−δDD

φd(x(t)) = abs

(
−1

2
(R2d(x) + P2(x))−1PT12(x)

)

the equation (15) performs in t 6= τk and (16) in t = τk, abs
in φd(x(t)) denotes the absolute value |·|. This restriction
is considered due to only positive drug amounts can be
provided.

Notice that due to treatment properties of the combined
IAV-PK/PD model, the second term in (6) does not
represent any control law and uc(t) = φc(x) = 0, t 6= τk
in (15). This means that there is no drug intake between
k-esimes control instants, letting (9) equal to zero. In
addition, in (16) φd(x(t)) drives the control action and
changes impulsively the drug state D. In this sense,
∆D(τk) = D(τ−k ) + φd(x(t)) = D(τ+k ) moves the initial
condition of D, before every free system period as in
(5). This determines the control-based amount of drug
necessary to inhibit viral replication.

3.2 Treatment Strategies and Performance Indices

We consider different treatment strategies. First, we study
the IAV model (1), (3) and (4) without drug treatment.
Second, we test the effects with drug influence by FDA
treatment recommendations, that is periodic fixed doses,
∆D(τk) = Dfixed on each intake. Note that the World
Health Organization (WHO) suggests two treatment lev-
els, curative regimen with Dfixed = 75 mg and a pandemic
regimen Dfixed = 150 mg [WHO (2009)].

Following (15) and (16) with the first instant D(τ1) = 75
mg for curative or D(τ1) = 150 mg for pandemic regimen,
we evaluate the effects of the control-based treatment
with two levels of drug concentration as initial dose and
different treatment initiation, these are days 2, 3 and 4
post influenza challenge (t0 = 2, 3, 4). The treatment is
active until day 10. The virological efficacy index Ψ is
defined as

Ψ = 100

(
1− AUCc

AUC

)
% (17)

where AUCc represents the area under the dynamics of V
with treatment and AUC is the area under the curve of
V without treatment [Canini et al. (2014), Boianelli et al.
(2016)]. It is important to remark that these areas are
calculated from time zero until the time when the viral
load is less than 50 copies per mL. On the other hand, the
total amount of drug is the sum of doses from the first
intake until 10 days post infection.
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4. RESULTS

Results of the different treatments strategies are numeri-
cally computed using Matlab. Expressions (15) and (16)
are programmed in such a way the initial intake time t0
can be modified for different tests and the control-based
drug dose is calculated by these equations.

The model is solved until the first drug intake, then for a
control instant, the program calculates the amount of drug
that is applied to the system. The process is repeated until
simulation time ends, here we use 10 days of simulation
time. Note that control parameters in (16) need to be
defined by the user. In this paper, control parameters were
fine-tuned as follows:

R2d =

(
120 0
0 5

)
, P2 =

(
14 0
0 1

)
(18)

P12 = (1000000 1000) , Gd = 1.7

We consider that the matrix P2 is modified by the drug.
R2d and P12 are assumed to be affected by IAV dynam-
ics. These values are obtained heuristically based on the
impact of the virus. Gd is a constant control gain.

4.1 Treatment Strategies Comparison

Simulation results in Fig. 2 show the virus, CD8+ T
cells, and drug dynamics. The evolution of the virus and
CD8+ T cells without treatment is also plotted. The drug
dynamics shows fixed doses for the therapy proposed by
the FDA while control-based therapy shows different doses
for each intake time.
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Fig. 2. Treatment strategies initiating at day 3. Curative
regimen doses are considered, Dfixed=75 mg and
D(τ1)=75 mg. Dashed line indicates the limit of viral
detection.

Firstly, analyzing the model without treatment, CD8+ T
cells approach a level of 6.65×106 cells while viral load is
undetectable about day 9. Using a curative regimen (75
mg dose), twice per day, the level of CD8+ T cells reaches
a level of 4.17×106 cells and viral load is undetectable
around day 7.5. For the control-based therapy, with an
initial dose of D(τ1)=75 mg, promotes CD8+ T cells to
3.52×106 cells as a maximum, driving the viral load to

be undetectable at day 7. Moreover, the control-based
therapy improves the virological efficacy index Ψ over FDA
therapy from 71% to 76%.
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Fig. 3. Treatment strategies initiating at day 3. Pandemic
regimen doses are considered, Dfixed=150 mg and
D(τ1)=150 mg. Dashed line indicates the limit of viral
detection.

For a pandemic regimen recommended by the FDA
(Dfixed=150 mg) and an initial dose (D(τ1)=150 mg)
for control-based, similar results occur as those in the
curative regimen, see Fig. 3 and Table 3. Levels of CD8+ T
cells are approximately 3.51×106 cells under FDA therapy
while control-based therapy presents 3.41×106 CD8+ T
cells. Over these therapies, both treatments make the viral
load undetectable around day 7 as well as the virological
efficacy index Ψ=79% for the two therapies.

Simulation results in Table 3 show that the curative
regimen case and initial dose (D(τ1)=Dfixed=75 mg) for
control-based, the amount of drug provided in the control-
based therapy is larger than in FDA therapy (Dfixed)
as well as the efficacy index Ψ. Also, viral clearance is
observed earlier in the control-based strategy. However,
for the pandemic regimen (D(τ1)=Dfixed=150 mg), the
total amount of drug remains lower in the control-based
therapy, that is 356 mg less for control-based therapy,
while reaching the same efficacy index Ψ.

Table 3. Treatment initiation on day 3. Per-
formance indices are presented for fixed dose

(Dfixed) and control-based (CB).

Amount of
drug (mg)

Index Ψ (%)

Dfixed CB Dfixed CB

75 mg 1050 1660 71 76

150 mg 2100 1744 79 79

4.2 Effects of Treatment Initiation

Drug efficacy is largely affected by treatment initiation
time. To this end, we initiate treatment at day 2 and 4
separately. We keep using the two regimens, 75 mg and
150 mg, as tested in the previous subsection. Initiating at
day 2, Fig. 4 shows the dynamics of the virus, CD8+ T
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cells and drug dynamics. The number of CD8+ T cells, for
FDA therapy is 3.48×106 and with control-based therapy
is 2.56×106 cells. The virus is undetectable after day 7
with the control-based therapy while for the FDA therapy
is almost at day 8. The respective efficacy indices are 96%
for the control-based action and 93% for FDA therapy,
both for the curative regimen.
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Fig. 4. Treatment strategies initiating at day 2. Curative
regimen doses are considered, Dfixed = 75 mg and
D(τ1) = 75 mg. Dashed line indicates the limit of
viral detection.
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Fig. 5. Treatment strategies initiating at day 4. Pandemic
regimen doses are considered, Dfixed = 150 mg and
D(τ1) = 150 mg. Dashed line indicates the limit of
viral detection.

Initiating at day 4, Fig. 5 shows the dynamics of the virus,
CD8+ T cells and drug treatment. We observe that CD8+
T cells peaks at 4.11×106 cells for the FDA therapy and
4.03×106 for the control-based therapy. In both cases,
the virus is undetectable after day 7. The efficacy index
resulted in the same, 44% for both treatments in the pan-
demic regimen. In summary, initiating treatment at late
phases of the infections, both strategies provide equivalent
results.

Table 4. Treatment initiation on day 2. Per-
formance indices are presented for fixed dose

(Dfixed) and control-based (CB).

Amount of
drug (mg)

Index Ψ (%)

Dfixed CB Dfixed CB

75 mg 1200 2194 93 96

150 mg 2400 2322 96 97

Table 5. Treatment initiation on day 4. Per-
formance indices are presented for fixed dose

(Dfixed) and control-based (CB).

Amount of
drug (mg)

Index Ψ (%)

Dfixed CB Dfixed CB

75 mg 900 1303 38 41

150 mg 1800 1377 44 44

The amount of drug and virological efficacy index Ψ for
doses of 75 and 150 mg are presented in Table 4 and Table
5. These tables present data for initiating treatment at day
2 and day 4 respectively. It is important to remark that in
the case of treatment initiation at day 2, the control-based
therapies presents slightly higher efficacy indices, over 95%
of efficacy. Furthermore, the total amount of drug doses is
slightly less for pandemic regimen cases of control-based
therapy, compared with the amounts of FDA treatments
with fixed doses. Initiating at day 4, the index Ψ is dropped
to less than 50% of virological efficacy in all tests. In this
sense, the 150 mg control-based therapy initiating at day
2 presents the best efficacy index Ψ. This highlights the
relevance to initiate antiviral efficacy in the early phase of
the infection, that is no after 2 days post infection.

5. CONCLUSIONS

This paper presents an integration of the IAV model to
interact with the oseltamivir PK/PD dynamics, which re-
sulted in a system that is represented as a semi-continuous
impulsive system. Simulations show that initiating treat-
ment at day 2, the control-based therapy reaches 96% and
97% of drug efficacy, over 93% and 96% of FDA treatment,
for 75 and 150 mg of initial dose respectively. When treat-
ment strategies are initiating 4 days post infection, both
strategies provide poor viral efficacy. Further techniques
that allow to schedule therapies at different time intervals
will help us to advance steps towards clinical practices.

There are several aspects to improve in this work. First,
observers design to viral infections as those presented in
Alanis et al. (2014) can be pivotal to tackle the limited
measurements in clinical practices. Moreover, bio-inspired
optimization schemes can serve to optimal fine-tune con-
trol parameters presented in (18). Finally, advances in sub-
optimal sampling schedules as in Cannon et al. (2016), can
maximize information content of experimental outcomes
for infection diseases, adding solutions to current limita-
tions in clinical trials.
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